变分法的基本原理 变分法

2023-08-07 08:35:04

您好,今天帅帅来为大家解答以上的问题。变分法的基本原理,变分法相信很多小伙伴还不知道,现在让我们一起来看看吧!

1、变分法的关键定理是欧拉-拉格朗日方程。

2、它对应于泛函的临界点。

3、在寻找函数的极大和极小值时,在一个解附近的微小变化的分析给出一阶的一个近似。

4、它不能分辨是找到了最大值或者最小值(或者都不是)。

5、变分法在理论物理中非常重要:在拉格朗日力学中,以及在最小作用原理在量子力学的应用中。

6、变分法提供了有限元方法的数学基础,它是求解边界值问题的强力工具。

7、它们也在材料学中研究材料平衡中大量使用。

8、而在纯数学中的例子有,黎曼在调和函数中使用狄利克雷原理。

9、同样的材料可以出现在不同的标题中,例如希尔伯特空间技术,莫尔斯理论,或者辛几何。

10、变分一词用于所有极值泛函问题。

11、微分几何中的测地线的研究是很显然的变分性质的领域。

12、极小曲面(肥皂泡)上也有很多研究工,称为Plateau问题。

本文就为大家分享到这里,希望小伙伴们会喜欢。

免责声明:本文来源网友投稿及网络整合仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。投诉邮箱:1765130767@qq.com。
本文地址: